Let \(\stab_G(C) = \{\pi_1,\dots,\pi_k\}\) and \(T(C,C') = \{\pi\in G\colon \pi^*(C) = C'\}\text{.}\) (Note that \(T(C,C) = \stab_G(C)\text{.}\)) Take \(\pi\in T(C,C')\text{.}\) Then \(\pi\circ \pi_i\in T(C,C')\) for \(1\leq i\leq k\text{.}\) Furthermore, if \(\pi\circ \pi_i = \pi\circ \pi_j\text{,}\) then \(\pi^{-1}\circ\pi\circ \pi_i=\pi^{-1}\circ\pi\circ \pi_j\text{.}\) Thus \(\pi_i=\pi_j\) and \(i=j\text{.}\) If \(\pi'\in T(C,C')\text{,}\) then \(\pi\inv\circ \pi'\in T(C,C)\text{.}\) Thus, \(\pi\inv\circ\pi' = \pi_i\) for some \(i\text{,}\) and hence \(\pi' = \pi\circ \pi_i\text{.}\) Therefore \(T(C,C') = \{\pi\circ\pi_1,\dots,\pi\circ\pi_k\}\text{.}\) Additionally, we observe that \(T(C',C) = \{\pi\inv\colon \pi\in T(C,C')\}\text{.}\) Now for all \(C'\in\langle C\rangle\text{,}\)
\begin{equation*}
|\stab_G(C')|=|T(C',C')|=|T(C',C)| =
|T(C,C')| = |T(C,C)| = |\stab_G(C)|.
\end{equation*}
Therefore,
\begin{equation*}
\sum_{C'\in\langle C\rangle}|\stab_G(C')| =
\sum_{C'\in\langle C\rangle} |T(C,C')|.
\end{equation*}
Now notice that each element of \(G\) appears in \(T(C,C')\) for precisely one \(C'\in\langle C\rangle\text{,}\) and the proposition follows.